

Tetrahedron Letters 43 (2002) 8547-8549

Enzymatic resolution of diethyl (3-hydroxy-1-butenyl) phosphonate

Mireille Attolini,^a Gilles Iacazio,^b Gilbert Peiffer^a and Michel Maffei^{a,*}

^aLaboratoire des Organo-Phosphorés (UMR 6009 du CNRS), BP 552, Faculté de Saint Jérôme,

Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France

^bLaboratoire de Bioinorganique Structurale (UMR 6517 du CNRS), BP 432, Faculté de Saint Jérôme,

Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France

Received 11 July 2002; accepted 19 September 2002

Abstract—The enzymatic esterification of diethyl (3-hydroxy-1-butenyl) phosphonate 1 with different enzymes has been carried out, and allows the preparation of (S)-1 and (R)-diethyl (3-acetoxy-1-butenyl) phosphonate 2 with very high enantiomeric excess. The absolute conguration of 1 was determined by independent synthesis from (S)-ethyl lactate. © 2002 Elsevier Science Ltd. All rights reserved.

Functionalised vinyl phosphonates are useful building blocks,¹ particularly for the synthesis of biologically active compounds. We have shown² that dialkyl 3-acetoxy-1-alkenyl phosphonates can be used to prepare phosphono amino acids which are known to be active against epilepsy and Parkinson's disease.³ They can also be used to prepare the corresponding allyl alcohols which have in turn been used as starting materials for the synthesis of antiviral nucleosides.^{4,5} Moreover, the related chiral 3-hydroxy-1-alkenyl phosphine oxides are used for the synthesis of optically active cyclopropyl ketones.⁶ Since chirality is determinant for the biological activity of these above cited compounds, an enantioselective synthesis of dialkyl 3-acetoxy (or 3-hydroxy)-1-alkenyl phosphonates is of interest.

Recently, the enzymatic resolution of several hydroxy phosphonates has been described.⁷ Prompted by these reports, we wish to disclose our results on the enzy-

matic resolution⁸ of diethyl (3-hydroxy-1-butenyl) phosphonate 1^9 (Scheme 1).

For this purpose, several enzymes were assayed as summarised in Table 1.

It appears that lipozyme (entry 1) gave the best results, since diethyl (3-acetoxy-1-butenyl) phosphonate **2** was obtained with an enantiomeric excess (ee) of 96% and unreacted **1** was recovered almost enantiomerically pure (ee=99%) when the reaction was stopped after 51% conversion. Lipases Amano AK (entry 2) and Amano PS (entry 3) also gave rather good results, with lower ee for unreacted **1**, but Amano PS led to the highest ee for compound **2** (ee=98%). In these cases, the reaction occurred after rather short periods, and the enantiose-lectivity factors¹⁰ *E* where superior to 200. *Asp. melleus* acylase (entry 4) also gave very good enantioselectivity for **2** (ee=98% after 33% conversion), but unreacted **1**

Scheme 1.

Keywords: enzymatic esterification; resolution of organophosphorus compounds; diethyl (3-hydroxy-1-butenyl) phosphonate. * Corresponding author. Fax: (+) 33 4 91 28 27 38; e-mail: michel.maffei@univ.u-3mrs.fr

Entry	Enzyme	Time	Conv. (%) ^a	1		2		Ε
				ee (%) ^{b,c}	Abs. conf.	ee (%) ^{b,c}	Abs. conf.	_
1	Lipozyme (Fluka)	21 h	51	99	(S)	96	(<i>R</i>)	> 200
2	Amano AK	21 h	50	97	(S)	96	(R)	>200
3	Amano PS	17 h	45	81	(S)	98	(R)	>200
4	Asp. melleus Acyl. (Amano)	72 h	33	49	(S)	98	(R)	160
5	Amano AP6	10 d	9	7	(S)	74	(R)	7
6	Amano AY	10 d	15	12	(S)	67	(R)	6
7	CAL-B (Novo)	17 h	87	91	(S)	14	(R)	3
8	PPL (Sigma)	49 h	19	22	(S)	99	(R)	130
9	CRL (Meito Sangyo)	10 d	13	8	(S)	54	(R)	4
10	Amano R-10	10 d	8	6	(S)	69	(R)	6
11	Lipozyme (Fluka)	17 h	49	95	<i>(S)</i>	>99	(R)	>200

Table 1. Enzymatic esterification of 1

^a Conversion, determined by GC.

^b Determined by chiral GC.

^c Determined after acetylation.

was recovered with only 49% ee. The use of other enzymes (entries 5–10) proceeded with lower kinetics and enantioselectivities.

Finally, the reaction carried out with lipozyme on a preparative scale (1 g of 1) proceeded with identical results (entry 11), and the chemical yields were 46% for 1 and 48% for 2, respectively.

The enzymatic solvolysis of 2 was also studied, the reaction being performed in diisopropyl ether with isopropanol as an acyl acceptor. Although the enantiose-lectivities were high, reaction times were much more important and the enzymes tested were found to be less efficient (Table 2). As expected, 1 was produced as the (*R*) enantiomer, whereas (*S*)-2 was recovered.

The absolute configuration of (+)-1 was shown to be *S*, by an independent synthesis from (*S*)-ethyl lactate 3, as depicted in Scheme 2.

O-Silylation followed by reduction with Dibal-H yielded the protected aldehyde 4^{11} which was subjected to a Wadsworth–Emmons reaction with tetraethyl methylene bis phosphonate, thus providing phosphonate 5,¹² which led, after acidic deprotection to enantiomerically pure (*S*)-1 whose optical rotation was $[\alpha]_{D}^{20} = +19$ (*c* 0.315, CH₂Cl₂).

In summary, we have shown that enzymatic resolution of diethyl (3-hydroxy-1-butenyl) phosphonate 1 can be efficiently carried out through esterification with lipozyme, leading to diethyl (3-acetoxy-1-butenyl)

Table 2. Enzymatic solvolysis of 2

Entry	Enzyme ^a	Time (days)	Conv. (%) ^b	1		2		E
				ee (%) ^{c,d}	Abs. conf.	ee (%)°	Abs. conf.	
1	Lipozyme (Fluka)	7	45	98	(R)	80	(S)	>200
2	Amano AK	7	38	82	(R)	51	<i>(S)</i>	18
3	Amano PS	6	25	89	(R)	30	(S)	24

^a 2 (40 mg) and the enzyme (50 mg) in diisopropyl ether (10 ml) and isopropanol (100 µl) were stirred at 30°C.

^b Conversion, determined by GC.

^c Determined by chiral GC.

^d Determined after acetylation.

Scheme 2.

phosphonate **2** and unreacted **1** with very high ee. Upscaling to up to one gram of substrate led essentially to the same results (95 and 99%, respectively for **1** and **2**).

Acknowledgements

We wish to thank Mrs. Yolande Charmasson for technical assistance.

References

- 1. Minami, T.; Motoyoshiya, J. Synthesis 1992, 333.
- Attolini, M.; Maffei, M.; Principato, B.; Peiffer, G. Synlett 1997, 384.
- Watkins, J. C. In *The NMDA Receptor*; 2nd ed.; Collingridge, G. L., Ed.; Oxford University Press: Oxford, 1994.
- Yokomatsu, T.; Shimizu, T.; Yuasa, Y.; Shibuya, S. Synlett 1995, 1280.
- Lau, W. Y.; Zhang, L.; Wang, J.; Cheng, D.; Zhao, K. Tetrahedron Lett. 1996, 37, 4297.
- 6. Nelson, A.; Warren, S. Tetrahedron Lett. 1996, 37, 1501.
- (a) Khushi, T.; O'Toole, K. J.; Sime, J. T. Tetrahedron Lett. 1993, 34, 2375; (b) Hammerschmidt, F.; Lindner, W.; Wuggenig, F.; Zarbl, E. Tetrahedron: Asymmetry 2000, 11, 2955 and references cited therein; (c) Rowe, B. J.; Spilling, C. D. Tetrahedron: Asymmetry 2001, 12, 1701; (d) Zurawinski, R.; Nakamura, K.; Drabowicz, J.; Kielbasinski, P.; Mikolajczyk, M. Tetrahedron: Asymmetry 2001, 12, 3139; (e) Guanti, G.; Zannetti, M. T.; Banfi, L.; Riva, R. Adv. Synth. Catal. 2001, 343, 682; (f) Zhang, Y.; Yuan, C.; Li, Z. Tetrahedron 2002, 58, 2973.
- 8. General procedure: The enzyme (50 mg) was added to a solution of 1 (48 mg; 0.23 mmol) and vinyl acetate (1 ml) in diisopropyl ether (10 ml), and the suspension was stirred at 30°C. The reaction was monitored by GC. After ca. 50% conversion (see Table 1), the mixture was filtered to remove the enzyme, the solvents were removed in vacuo, and the crude was subjected to flash chromatography (silica, ethyl acetate/methanol, 95:5) to yield 2 followed by 1. Ee's were measured by GC on a chiral column (CP-chirasil-DEX CB, 25 m, 32 mm I.D.), isothermal 160°C. Retention times: *rac.* 1: 12.9 min, (S)-2: 10.93 min, (R)-2: 11.38 min. Ee's for 1 were measured after acetylation.

- Compound 1 was prepared by rearrangement of diethyl (2,3-epoxy-1-butyl) phosphonate according to: Just, J.; Potvin, P.; Hakimelahi, G. H. *Can. J. Chem.* 1980, 58, 2780. It can alternatively be obtained by palladiumcatalysed acetoxylation of diethyl (1-butenyl) phosphonate to provide 2, followed by saponification, see: Principato, B.; Maffei, M.; Siv, C.; Buono, G.; Peiffer, G. *Tetrahedron* 1996, 52, 2087.
- 10. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. Am. Chem. Soc. 1982, 104, 7294.
- Hirama, M.; Shigemoto, T.; Itô, S. J. Org. Chem. 1987, 52, 3342.
- 12. (S)-Diethyl-(E)-(3-tertbutyldimethylsilyloxy-1-butenyl)

phosphonate 5: A solution of tetraethyl methylene bis phosphonate (576 mg; 2 mmol) in anhydrous dimethoxyethane (10 ml) was added to a suspension of sodium hydride (48 mg; 2 mmol) in dimethoxyethane (10 ml) at 0°C. The mixture was stirred at room temperature until hydrogen evolution ceased (ca. 1 h). It was then cooled to 0°C and a solution of 4 (376 mg; 2 mmol) in dimethoxyethane (5 ml) was added dropwise. Stirring was continued for 2 h at room temperature after which the mixture was quenched with a sat. NH₄Cl solution. Ether extraction, standard workup and flash chromatography (silica, ethyl acetate) afforded 330 mg (51%) of 5. ¹H NMR (300 MHz, CDCl₃): 0.04 (s, 6H); 0.89 (s, 9H); 1.22 (d, 3H, ${}^{3}J_{HH} = 6.7$ Hz); 1.30 (td, 6H, ${}^{3}J_{HH} = 6.9$ Hz, ${}^{4}J_{\rm HP} = 2.0$ Hz); 4.05 (m, 4H); 4.40 (m, 1H); 5.80–5.93 (ddd, 1H, ${}^{2}J_{\rm HP} = 21.1$ Hz, ${}^{3}J_{\rm HH} = 16.9$ Hz, ${}^{4}J_{\rm HH} = 1.5$ Hz); 6.69–6.83 (ddd, 1H, ${}^{3}J_{\rm HP} = 22.1$ Hz, ${}^{3}J_{\rm HH} = 16.9$ Hz, ${}^{3}J_{\rm HH} = 3.5$ Hz). 13 C NMR: -4.95 (s); 16.30 (d, ${}^{3}J_{\rm PC} = 6.2$ Hz); 18.17 (s); 23.27 (d, ${}^{4}J_{PC} = 2.2$ Hz); 25.74 (s); 61.61 (d, ${}^{2}J_{PC} = 5.7$ Hz); 68.40 (d, ${}^{3}J_{PC} = 21.9$ Hz); 114.12 (d, ${}^{1}J_{PC} = 188.0$ Hz); 156.30 (d, ${}^{2}J_{PC} = 5.0$ Hz). ${}^{31}P$ NMR: 19.9. $[\alpha]_{D}^{20} = +7.76$ (*c* 1.16, CH₂Cl₂).

Deprotection was carried out by stirring a solution of **5** in THF with 1 M H₂SO₄. Standard workup and flash chromatography (ethyl acetate/methanol, 95:5) afforded enantiomerically pure (S)-1 as checked by chiral GC analysis after acetylation.

¹H NMR (300 MHz, CDCl₃): 1.28 (d, 3H, ${}^{3}J_{HH}$ =6.8 Hz); 1.30 (t, 6H, ${}^{3}J_{HH}$ =7.1 Hz); 3.95 (br. s, 1H); 4.05 (q, 4H, ${}^{3}J_{HH}$ =7.2 Hz); 4.42 (m, 1H); 5.90 (ddd, 1H, ${}^{2}J_{HP}$ = 20.8 Hz, ${}^{3}J_{HH}$ =17.0 Hz, ${}^{4}J_{HH}$ =1.7 Hz); 6.79 (ddd, 1H, ${}^{3}J_{HP}$ =22.5 Hz, ${}^{3}J_{HH}$ =17.0 Hz, ${}^{3}J_{HH}$ =4.0 Hz). ¹³C NMR: 16.26 (d, ${}^{3}J_{PC}$ =7.0 Hz); 22.39 (s); 61.90 (d, ${}^{2}J_{PC}$ = 5.9 Hz); 67.62 (d, ${}^{3}J_{PC}$ =21.8 Hz); 114.3 (d, ${}^{1}J_{PC}$ =189.3 Hz); 156.2 (d, ${}^{2}J_{PC}$ =4.6 Hz). ³¹P NMR: 19.4. [α]²⁰_D=+19 (c 0.315, CH₂Cl₂).